An ectopic approach for engineering a vascularized tracheal substitute

Biomaterials. 2014 Jan;35(4):1163-75. doi: 10.1016/j.biomaterials.2013.10.055. Epub 2013 Nov 13.

Abstract

Tissue engineering can provide alternatives to current methods for tracheal reconstruction. Here we describe an approach for ectopic engineering of vascularized trachea based on the implantation of co-cultured scaffolds surrounded by a muscle flap. Poly(L-lactic-co-glycolic acid) (PLGA) or poly(ε-caprolactone) (PCL) scaffolds were seeded with chondrocytes, bone marrow stem cells and co-cultured both cells respectively (8 groups), wrapped in a pedicled muscle flap, placed as an ectopic culture on the abdominal wall of rabbits (n = 24), and harvested after two and four weeks. Analysis of the biochemical and mechanical properties demonstrated that the PCL scaffold with co-culture cells seeding displayed the optimal chondrogenesis with adequate rigidity to maintain the cylindrical shape and luminal patency. Histological analysis confirmed that cartilage formed in the co-culture groups contained a more homogeneous and higher extracellular matrix content. The luminal surfaces appeared to support adequate epithelialization due to the formation of vascularized capsular tissue. A prefabricated neo-trachea was transferred to the defect as a tracheal replacement and yielded satisfactory results. These encouraging results indicate that our co-culture approach may enable the development of a clinically applicable neo-trachea.

Keywords: Bone marrow stem cell; Cartilage; Co-culture; Poly(ε-caprolactone) (PCL); Poly-lactic-glycolic acid (PLGA); Trachea.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cells, Cultured
  • Chondrocytes / cytology*
  • Chondrogenesis
  • Coculture Techniques
  • Lactic Acid / chemistry*
  • Polyesters / chemistry*
  • Polyglycolic Acid / chemistry*
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Rabbits
  • Tissue Engineering / methods*
  • Tissue Scaffolds / chemistry*
  • Trachea / blood supply
  • Trachea / cytology*

Substances

  • Polyesters
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • polycaprolactone
  • Polyglycolic Acid
  • Lactic Acid