Introduction: Bisphosphonates, including ibandronate, are used in the prevention and treatment of osteoporosis.
Methods and results: We report a case of suspected ibandronate-associated arrhythmia, following a single dose of ibandronate in a 55-year-old female. ECG at presentation revealed frequent ectopy and QT/QTc interval prolongation; at follow-up 9 months later the QT/QTc intervals were normalized. Proarrhythmic potential of ibandronate was assessed with a combination of in vivo and in vitro approaches in canines and canine ventricular myocytes. We observed late onset in vivo repolarization instability after ibandronate treatment. Myocytes superfused with ibandronate exhibited action potential duration (APD) prolongation and variability, increased early afterdepolarizations (EADs) and reduced Ito (P < 0.05), with no change in IKr . Ibandronate-induced APD changes and EADs were prevented by inhibition of intracellular calcium cycling. Ibandronate increased sarcoplasmic reticulum calcium load; during washout there was an increase in calcium spark frequency and spontaneous calcium waves. Computational modeling was used to examine the observed effects of ibandronate. While reductions in Ito alone had modest effects on APD, when combined with altered RyR inactivation kinetics, the model predicted effects on APD and SR Ca(2+) load consistent with observed experimental results.
Conclusion: Ibandronate may increase the susceptibility to ventricular ectopy and arrhythmias. Collectively these data suggest that reduced Ito combined with abnormal RyR calcium handling may result in a previously unrecognized form of drug-induced proarrhythmia.
Keywords: Torsade de Pointes; biophosphonates; calcium; ibandronate; ion channels; long-QT; pharmacology; potassium; proarrhythmia.
© 2013 Wiley Periodicals, Inc.