Purpose: A practical, noninvasive method is needed to measure the extracellular pH (pHe) within in vivo tumors to longitudinally monitor tumor acidosis. We have optimized a biomedical imaging method, termed acidoCEST MRI, to provide noninvasive assessments of tumor pHe in preclinical models of mammary carcinoma.
Methods: A CEST-FISP MRI method was optimized to detect the chemical exchange saturation transfer (CEST) of two amide protons of a clinically approved CT contrast agent, iopromide. The ratio of the two CEST effects was used to measure pH. Routes of administration of iopromide were evaluated to ensure sufficient delivery of the agent to the tumor. The optimized acidoCEST MRI method was then used to evaluate the change in tumor pHe following alkalinizing bicarbonate treatment.
Results: The acidoCEST MRI protocol measured pH between 6.2 and 7.2 pH units. Greater delivery of iopromide was shown to improve the precision of the measurement of tumor pHe, but the agent did not influence the tumor pHe. AcidoCEST MRI was used to longitudinally monitor the effect of bicarbonate treatment on the pHe of tumors and bladders.
Conclusion: This study demonstrates that an optimized acidoCEST MRI method is a practical, noninvasive method for assessing changes in tumor acidosis.
Keywords: CEST MRI; CEST-FISP; bicarbonate treatment; iopromide; tumor pH.
Copyright © 2013 Wiley Periodicals, Inc.