Differentiation marker, multifunctionality and magnitude analyses of specific-CD8(+) memory T cells are crucial to improve development of HIV vaccines designed to generate cell-mediated immunity. Therefore, we fully characterized the HIV-specific CD8(+) T cell responses induced in volunteers vaccinated with HIV lipopeptide vaccines for phenotypic markers, tetramer staining, cytokine secretion, and cytotoxic activities. The frequency of ex vivo CD8(+) T cells elicited by lipopeptide vaccines is very rare and central-memory phenotype and functions of these cells were been shown to be important in AIDS immunity. So, we expanded them using specific peptides to compare the memory T cell responses induced in volunteers by HIV vaccines with responses to influenza (FLU) or Epstein Barr virus (EBV). By analyzing the differentiation state of IFN-γ-secreting CD8(+) T cells, we found a CCR7(-)CD45RA(-)CD28(+int)/CD28(-) profile (>85%) belonging to a subset of intermediate-differentiated effector T cells for HIV, FLU, and EBV. We then assessed the quality of the response by measuring various T cell functions. The percentage of single IFN-γ T cell producers in response to HIV was 62% of the total of secreting T cells compared with 35% for FLU and EBV, dual and triple (IFN-γ/IL-2/CD107a) T cell producers could also be detected but at lower levels (8% compared with 37%). Finally, HIV-specific T cells secreted IFN-γ and TNF-α, but not the dual combination like FLU- and EBV-specific T cells. Thus, we found that the functional profile and magnitude of expanded HIV-specific CD8(+) T precursors were more limited than those of to FLU- and EBV-specific CD8(+) T cells. These data show that CD8(+) T cells induced by these HIV vaccines have a similar differentiation profile to FLU and EBV CD8(+) T cells, but that the vaccine potency to induce multifunctional T cells needs to be increased in order to improve vaccination strategies.
Keywords: CD8(+) T cells; Cytokines; Differentiation; HIV-lipopeptide vaccine; Human; Maturation.
Copyright © 2013 Elsevier Ltd. All rights reserved.