The onset of skeletal muscle regeneration is characterized by proliferating myoblasts. Proliferating myoblasts have an increased energy demand and lactate exchange across the sarcolemma can be used to address this increased demand. Monocarboxylate transporters (MCTs) are involved in lactate transport across the sarcolemma and are known to be affected by various physiological stimuli. However, MCT expression at the onset of skeletal muscle regeneration has not been determined. The purpose of this study was to determine if skeletal muscle regeneration altered MCT expression in regenerating tibialis anterior (TA) muscle. Male C57/BL6 mice were randomly assigned to either a control (uninjured) or bupivacaine (injured) group. Three days post injection, the TA was extracted for determination of protein and gene expression. A 21% decrease in muscle mass to tibia length (2.4 ± 0.1 mg/mm vs. 1.9 ± 0.2 mg/mm, P < 0.02) was observed. IGF-1 and MyoD gene expression increased 5.0-fold (P < 0.05) and 3.5-fold (P < 0.05), respectively, 3 days post bupivacaine injection. MCT-1 protein was decreased 32% (P < 0.03); however, MCT-1 gene expression was not altered. There was no difference in MCT4 protein or gene expression. Lactate dehydrogenase (LDH)-A protein expression increased 71% (P < 0.0004). Protein levels of LDH-B and mitochondrial enzyme cytochrome C oxidase subunit decreased 3 days post bupivacaine injection. CD147 and PKC-θ protein increased 64% (P < 0.03) and 79% (P < 0.02), respectively. MCT1 but not MCT4 expression is altered at the onset of skeletal muscle regeneration possibly in an attempt to regulate lactate uptake and use by skeletal muscle cells.
Keywords: Bupivacaine injection; CD147 expression; MCT expression; skeletal muscle damage; skeletal muscle regeneration.