Urocanate as a potential signaling molecule for bacterial recognition of eukaryotic hosts

Cell Mol Life Sci. 2014 Feb;71(4):541-7. doi: 10.1007/s00018-013-1527-6. Epub 2013 Dec 5.

Abstract

Host recognition is the crucial first step in infectious disease pathogenesis. Recognition allows pathogenic bacteria to identify suitable niches and deploy appropriate phenotypes for successful colonization and immune evasion. However, the mechanisms underlying host recognition remain largely unknown. Mounting evidence suggests that urocanate-an intermediate of the histidine degradation pathway-accumulates in tissues, such as skin, and acts as a molecule that promotes bacterial infection via molecular interaction with the bacterial regulatory protein HutC. In Gram-negative bacteria, HutC has long been known as a transcriptional repressor of hut genes for the utilization of histidine (and urocanate) as sources of carbon and nitrogen. Recent work on the opportunistic human pathogen Pseudomonas aeruginosa and zoonotic pathogen Brucella abortus shows that urocanate, in conjunction with HutC, plays a significant role in the global control of cellular metabolism, cell motility, and expression of virulence factors. We suggest that in addition to being a valuable source of carbon and nitrogen, urocanate may be central to the elicitation of bacterial pathogenesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacteria / pathogenicity
  • Bacterial Infections / metabolism*
  • Bacterial Physiological Phenomena*
  • Bacterial Proteins / metabolism*
  • Histidine / metabolism*
  • Host-Pathogen Interactions*
  • Humans
  • Signal Transduction
  • Urocanic Acid / metabolism*
  • Virulence Factors / metabolism

Substances

  • Bacterial Proteins
  • Virulence Factors
  • Histidine
  • Urocanic Acid