Background: Large-volume, rapid crystalloid infusion may increase endothelial cell damage and induce shear stress, potentially leading to multiple-organ dysfunction syndrome. Limited guideline data for fluid administration are currently available, especially for the aging population. The aim of the present study was to compare the degree of organ damage in conscious aging rats when different resuscitation speeds were used during the treatment of hemorrhagic shock (HS).
Methods: Eighteen aging male Wistar-Kyoto rats were randomly divided into the following three groups: the control group, 30-min rapid resuscitation group, and 12-h slow resuscitation group. To mimic HS, 40% of the total blood volume was withdrawn. Fluid resuscitation (1:3) was given at 30 min after the blood withdrawal. Blood biochemical parameters including glucose, lactic acid, and lactate dehydrogenase (LDH) were measured along with the levels of serum and bronchoalveolar lavage fluid, tumor necrosis factor alpha (TNF-α), and interleukin 10 by enzyme-linked immunosorbent assay. The lungs were examined for pathologic changes, and the injury score at 24 h after HS was calculated.
Results: Compared with slow-rate resuscitation, initially rapid and immediate resuscitation significantly increased the serum levels of glucose, LDH, and proinflammatory cytokines (TNF-α and interleukin 10), and bronchoalveolar lavage fluid levels of white blood cells, TNF-α, and LDH as well as produced pathologic changes in the organ. The lung injury scores were higher after induced HS in aging rats.
Conclusions: The slow and continuous (12 h) fluid resuscitation rate ameliorated HS-induced organ damage in conscious aging rats.
Keywords: Aging rat; Fluid resuscitation; Hemorrhagic shock; Organ damage.
Copyright © 2014 Elsevier Inc. All rights reserved.