Recombinant Escherichia coli cells expressing Alcaligenes sp. nitrilase were simply immobilized by direct cross-linking using glutaraldehyde. About 85 % of the total nitrilase activity was recovered under the optimal cross-linking conditions. The thermal stabilities of the cross-linked cells measured at 30, 40 and 50 °C were 4.5-, 5.3-, and 5.1-fold those of the free cells, respectively. The concentration of (R)-(-)-mandelic acid reached 280 mM after merely 2 h transformation with the immobilized cells using 300 mM mandelonitrile as substrate, affording an extremely high productivity of 510.7 g L(-1) d(-1). In addition, operational stability of the immobilized cells was obviously superior to that of free cells, without significant activity loss after 15 cycles of batch reactions or 8 cycles of repeated fed-batch reactions. Therefore, the easy preparation and robust characteristics of the immobilized biocatalyst make it a very promising biocatalyst for high-performance and low-cost production of optically pure (R)-(-)-mandelic acid.