Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy

Opt Lett. 2013 Oct 15;38(20):4154-7. doi: 10.1364/OL.38.004154.

Abstract

We present a synchronously pumped fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy. Pulses from a 1 μm Yb-doped fiber laser are amplified and frequency converted to 779-808 nm through normal dispersion four-wave mixing in a photonic crystal fiber. The idler frequency is resonant in the oscillator cavity, and we find that bandpass filtering the feedback is essential for stable, narrow-bandwidth output. Experimental results agree quite well with numerical simulations of the device. Transform-limited 2 ps pulses with energy up to 4 nJ can be generated at the signal wavelength. The average power is 180 mW, and the relative-intensity noise is much lower than that of a similar parametric amplifier. High-quality coherent Raman images of mouse tissues recorded with this source are presented.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Ear
  • Mice
  • Optical Fibers*
  • Sebaceous Glands
  • Spectrum Analysis, Raman / instrumentation*