Thermal behavior of resonant waveguide-grating mirrors in Yb:YAG thin-disk lasers

Opt Lett. 2013 Nov 15;38(22):4766-9. doi: 10.1364/OL.38.004766.

Abstract

We present the experimental investigations of different designs of resonant waveguide-grating (RWG) mirrors, used as intracavity folding mirrors in an Yb:YAG thin-disk laser (TDL). The investigation was focused on the rise of the surface temperature due to the coupling of the incident radiation to a waveguide mode as well as on laser efficiency, polarization, and wavelength selectivity. It was found that the damage threshold and efficiency can be increased significantly with a proper design of the structure in comparison to the simplest design with a single waveguide layer. So far, the presented RWG allow the generation of linear polarization with a narrow spectral linewidth down to 25 pm FWHM in a fundamental mode Yb:YAG TDL. Damage thresholds of 60 kW/cm(2) have been reached where only 63 K of surface temperature increase was observed. This showed that the improved mirrors are suitable for the generation of kW-class narrow linewidth, linearly polarized Yb:YAG TDL.