Scale criticality in estimating ecosystem carbon dynamics

Glob Chang Biol. 2014 Jul;20(7):2240-51. doi: 10.1111/gcb.12496. Epub 2014 May 2.

Abstract

Scaling is central to ecology and Earth system sciences. However, the importance of scale (i.e. resolution and extent) for understanding carbon dynamics across scales is poorly understood and quantified. We simulated carbon dynamics under a wide range of combinations of resolution (nine spatial resolutions of 250 m, 500 m, 1 km, 2 km, 5 km, 10 km, 20 km, 50 km, and 100 km) and extent (57 geospatial extents ranging from 108 to 1 247 034 km(2) ) in the southeastern United States to explore the existence of scale dependence of the simulated regional carbon balance. Results clearly show the existence of a critical threshold resolution for estimating carbon sequestration within a given extent and an error limit. Furthermore, an invariant power law scaling relationship was found between the critical resolution and the spatial extent as the critical resolution is proportional to A(n) (n is a constant, and A is the extent). Scale criticality and the power law relationship might be driven by the power law probability distributions of land surface and ecological quantities including disturbances at landscape to regional scales. The current overwhelming practices without considering scale criticality might have largely contributed to difficulties in balancing carbon budgets at regional and global scales.

Keywords: carbon cycle; disturbance; geospatial extent; process; scaling; spatial resolution.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon Sequestration*
  • Ecosystem*
  • Geography
  • Models, Theoretical*
  • Southeastern United States
  • Time Factors