Purpose: Recent development of mice null for either Muc5ac or Muc5b mucin allows study of their specific roles at the mouse ocular surface. A recent report indicated that Muc5ac null mice show an ocular surface phenotype similar to that seen in dry eye syndrome. The purpose of our study was to determine the effect of lack of Muc5ac or Muc5b on the ocular surface, and to determine if environmental desiccating stress exacerbated a phenotype.
Methods: Muc5ac null and Muc5b null mice, and their wild-type controls were examined for ocular surface defects by fluorescein staining. The number of goblet cells per area of conjunctival epithelium was counted, and levels of mucin gene expression and genes associated with epithelial stress, keratinization, and differentiation, known to be altered in dry eye syndrome, were assayed. To determine if the null mice would respond more to desiccating stress than their wild-type controls, they were challenged in a controlled environment chamber (CEC) and assessed for changes in fluorescein staining, tear volume, and inflammatory cells within the conjunctival and corneal epithelia.
Results: Unlike the previous study, we found no ocular surface phenotype in the Muc5ac null mice, even after exposure to desiccating environmental stress. Similarly, no ocular surface phenotype was present in the Muc5b null mice, either before or after exposure to a dry environment in the CEC.
Conclusions: Our results indicate that deleting either the Muc5ac or Muc5b gene is insufficient to create an observable dry eye phenotype on the ocular surface of these mice.
Keywords: animal models; dry eye; mucins.