In this study, two D-A molecules NACANA and CANACA, based on carbazole (CA) donor and naphthalimide (NA) acceptor, with different D-A arrangement (A-D-A and D-A-D) were synthesized. The photophysical and electrochemical properties, microstructure and memory behaviors of both A-D-A and D-A-D molecules were systematically investigated. The fabricated devices ITO/NACANA or CANACA layer/Al with a simple sandwich configuration both exhibited volatile nature after shutting off the external electric field. Interestingly, NACANA showed ON-state retention time of ca. 12 min, longer than that of CANACA (ca. 6 min). The difference in retention ability of the programmed states could be assigned to the difference of the D-A arrangement. This type of retention ability adjustment by varying the arrangement of donor and acceptor segments may provide a guide of structure design for future organic-based specific memory devices with tunable volatile property.