Rationale and objectives: Using low-dose computed tomography (LDCT), small and heterogeneous lung tumors are detected in screening. The criteria for assessing detected tumors are crucial for determining follow-up or resection strategies. The purpose of this study was to investigate the capacity of density features in differentiating lung tumors.
Materials and methods: From July 2008 to December 2011, 48 surgically confirmed tumors (29 malignancies, comprising 17 cases of adenocarcinoma and 12 cases of adenocarcinoma in situ [AdIs], and 19 benignancies, comprising 11 cases of atypical adenomatous hyperplasia [AAH] and eight cases of benign non-AAH) in 38 patients were retrospectively evaluated, indicating that the positive predictive value (PPV) of physicians is 60.4% (29/48). Three types of density features, tumor disappearance rate (TDR), mean, and entropy, were obtained from the CT values of detected tumors.
Results: Entropy is capable of differentiating malignancy from benignancy but is limited in differentiating AdIs from benign non-AAH. The combination of entropy and TDR is effective for predicting malignancy with an accuracy of 87.5% (42/48) and a PPV of 89.7% (26/29), improving the PPV of physicians by 29.3%. The combination of entropy and mean adequately clarifies the four pathology groups with an accuracy of 72.9% (35/48). For tumors with a mean below -400 Hounsfield units, the criterion of an entropy larger than 5.4 might be appropriate for diagnosing malignancy. For others, the pathology is either benign non-AAH or adenocarcinoma; adenocarcinoma has a higher entropy than benign non-AAH, with the exception of tuberculoma.
Conclusions: Combining density features enables differentiating heterogeneous lung tumors in LDCT.
Keywords: Density feature; computer-aided diagnosis; low-dose computed tomography; lung tumor.
Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.