Background: Cell-free microRNAs stably and abundantly exist in body fluids and emerging evidence suggests cell-free microRNAs as novel and non-invasive disease biomarker. Deregulation of miR-29 is involved in the pathogenesis of diabetic nephropathy and insulin resistance thus may be implicated in diabetic vascular complication. Therefore, we investigated the possibility of urinary miR-29 as biomarker for diabetic nephropathy and atherosclerosis in patients with type 2 diabetes.
Methods: 83 patients with type 2 diabetes were enrolled in this study, miR-29a, miR-29b and miR-29c levels in urine supernatant was determined by TaqMan qRT-PCR, and a synthetic cel-miR-39 was added to the urine as a spike-in control before miRNAs extraction. Urinary albumin excretion rate and urine albumin/creatinine ratio, funduscopy and carotid ultrasound were used for evaluation of diabetic vascular complication. The laboratory parameters indicating blood glucose level, renal function and serum lipids were also collected.
Results: Patients with albuminuria (n = 42, age 60.62 ± 12.00 yrs) showed significantly higher comorbidity of diabetic retinopathy (p = 0.015) and higher levels of urinary miR-29a (p = 0.035) compared with those with normoalbuminuria (n = 41, age 58.54 ± 14.40 yrs). There was no significant difference in urinary miR-29b (p = 0.148) or miR-29c level (p = 0.321) between groups. Urinary albumin excretion rate significantly correlated with urinary miR-29a level (r = 0.286, p = 0.016), while urinary miR-29b significantly correlated with carotid intima-media thickness (cIMT) (r = 0.286, p = 0.046).
Conclusion: Urinary miR-29a correlated with albuminuria while urinary miR-29b correlated with carotid intima-media thickness (cIMT) in patients with type 2 diabetes. Therefore, they may have the potential to serve as alternative biomarker for diabetic nephropathy and atherosclerosis in type 2 diabetes.