Construction of a newly designed small-size mass spectrometer for helium isotope analysis: toward the continuous monitoring of (3)he/(4)he ratios in natural fluids

Mass Spectrom (Tokyo). 2012;1(2):A0009. doi: 10.5702/massspectrometry.A0009. Epub 2012 Nov 2.

Abstract

The construction of a small-size, magnetic sector, single focusing mass spectrometer (He-MS) for the continuous, on-site monitoring of He isotope ratios ((3)He/(4)He) is described. The instrument is capable of measuring (4)He/(20)Ne ratios dissolved in several different types of natural fluids of geochemical interest, such as groundwater and gas from hot springs, volcanoes and gas well fields. The ion optics of He-MS was designed using an ion trajectory simulation program "TRIO," which permits the simultaneous measurement of (3)He and (4)He with a double collector system under a mass resolution power (M/ΔM) of >700. The presently attained specifications of He-MS are; (1) a mass resolving power of ca. 430, sufficient to separate (3)He(+) from interfering ions, HD(+) and H3 (+), (2) ultra-high vacuum conditions down to 3×10(-8) Pa, and (3) a sufficiently high sensitivity to permit amounts of (3)He to be detected at levels as small as 10(-13) cm(3) STP (3×10(6) atoms). Long term stability for (3)He/(4)He analysis was examined by measuring the (3)He/(4)He standard gas (HESJ) and atmospheric He, resulting in ∼3% reproducibility and ≤5% experimental error for various amounts of atmospheric He from 0.3 to 2.3×10(-6) cm(3) STP introduced into the instrument. A dynamic range of measurable (3)He/(4)He ratios with He-MS is greater than 10(3) which was determined by measuring various types of natural fluid samples from continental gas (with a low (3)He/(4)He ratio down to 2×10(-8)) to volcanic gas (with a high (3)He/(4)He ratio up to 3×10(-5)). The accuracy and precision of (3)He/(4)He and (4)He/(20)Ne ratios were evaluated by comparing the values with those measured using well established noble gas mass spectrometers (modified VG5400/MS-III and -IV) in our laboratory, and were found to be in good agreement within analytical errors. Usefulness of the selective extraction of He from water/gas using a high permeability of He through a silica glass wall at high temperature (700°C) is demonstrated.

Keywords: He extraction from natural fluids; monitoring of 3He/4He ratio; small-size mass spectrometer.