We used a high-density array of real-time PCR assays for commonly reported rodent infectious agents (PRIA) to test naturally infected index mice and sentinel mice exposed by contact and soiled-bedding transfer. PRIA detected 14 pathogens--including viruses, bacteria, fur mites, pinworms, and enteric protozoa--in 97.2% of 28 pooled fecal samples, fur-perianal swabs, and oral swabs from 4 cages containing a total of 10 index mice. Among these pathogens, PRIA (like conventional health monitoring methods) failed to detect Mycoplasma pulmonis, Pasteurella pneumotropica, and Giardia spp. in all of the 9 contact and 9 soiled-bedding sentinels. PRIA demonstrated murine adenovirus and Cryptosporidium and Spironucleus spp. in contact but not soiled-bedding sentinels and detected Helicobacter and pinworms in fewer than half of the soiled-bedding sentinels. Of the 4 species of Helicobacter that species-specific PCR assays identified in index mice, only H. ganmani was found in soiled-bedding and contact sentinels. PRIA detected all of the pathogens in sentinels that were identified by conventional methods. Myobia musculi was detected by PCR in index and sentinel mice but missed by conventional parasitologic examinations. In summary, PRIA reproducibly detected diverse pathogens in heavily pooled specimens collected noninvasively from infected index mice antemortem. The inability of PRIA and conventional health monitoring methods (that is, parasitology, micro-biology, and serology) to demonstrate transmission of some pathogens to contact sentinels and the inefficient transmission of others to soiled-bedding sentinels underscores the importance of direct PCR testing to determine the pathogen status of rodents in quarantine and during routine colony surveillance.