The genes for the hemopoietic growth factors, GM colony-stimulating factor (CSF) and G-CSF have been cloned, and recombinant material is available for both. We tested these recombinant factors for their effects on the blast cells of acute myeloblastic leukemia (AML). Culture methods are available that support both colony formation by AML blasts and the growth of blast stem cells in suspension. Recombinant GM-CSF is active in both culture systems, although to a varying degree. We found that recombinant G-CSF was also effective; however, the two recombinant factors showed striking synergism for the stimulation of blast growth of cells from five of eight AML patients. In these cases, the combination was equivalent to the stimulating activity of supernatants from the continuous cell line 5637. This conditioned medium (HTB9-CM) is considered the standard for blast growth. Blasts from one of the patients grew without added factor. In another instance, recombinant GM-CSF alone was almost as effective as HTB9-CM. In the third case, both recombinant factors were active, but synergism was not observed and their combined effect was not equivalent to that of HTB9-CM. Both GM-CSF and G-CSF were active on normal bone marrow granulopoietic progenitors, but synergism was not observed. We conclude that the marked heterogeneity observed when AML blasts are examined by other criteria is also observed when their response to growth factors is evaluated.