S100A8/9 and S100A12 are emerging biomarkers for disease activity of autoimmune and cardiovascular diseases. We demonstrated previously that S100A12 accelerates atherosclerosis accompanied by large cholesterol deposits in atherosclerotic lesions of apoE-null mice. The objective of this study was to ascertain whether S100/calgranulin influences cholesterol homeostasis in macrophages. Peritoneal macrophages from transgenic mice expressing human S100A8/9 and S100A12 in myeloid cells [human bacterial artificial chromosome (hBAC)/S100] have increased lipid content and reduced ABCG1 expression and [(3)H]cholesterol efflux compared with WT littermates. This was associated with a 6-fold increase in plasma interleukin (IL)-22 and increased IL-22 mRNA in splenic T cells. These findings are mediated by the receptor for advanced glycation endproducts (RAGE), because hBAC/S100 mice lacking RAGE had normal IL-22 expression and normal cholesterol efflux. In vitro, recombinant IL-22 reduced ABCG1 expression and [(3)H]cholesterol efflux in THP-1 macrophages, while recombinant S100A12 had no effect on ABCG1 expression. In conclusion, S100/calgranulin has no direct effect on cholesterol efflux in macrophages, but rather promotes the secretion of IL-22, which then directly reduces cholesterol efflux in macrophages by decreasing the expression of ABCG1.
Keywords: S100A12; cholesterol transporters; interleukin-22; peritoneal macrophages; receptor for advanced glycation endproducts.