Recent insights into myocardial biology uncovered a hereto unknown regenerative capacity of the adult heart. The discovery of dividing cardiomyocytes and the identification and characterization of cardiac stem and progenitor cells with myogenic and angiogenic potential have generated new hopes that cardiac regeneration and repair might become a therapeutic option. During the past decade, multiple candidate cells have been proposed for cardiac regeneration, and their mechanisms of action in the myocardium have been explored. Initial clinical trials have focused on the use of bone marrow-derived cells to promote myocardial regeneration in ischemic heart disease and have yielded very mixed results, with no clear signs of clinically meaningful functional improvement. Although the efficiency of bona fide cardiomyocyte generation is generally low, stem cells delivered into the myocardium act mainly via paracrine mechanisms. More recent studies taking advantage of cardiac committed cells (eg, resident cardiac progenitor cells or primed cardiogenic mesenchymal stem cells) showed promising results in first clinical pilot trials. Also, transplantation of cardiomyogenic cells generated by induced pluripotent stem cells and genetic reprogramming of dividing nonmyocytes into cardiomyocytes may constitute attractive new regenerative approaches in cardiovascular medicine in the future. We discuss advantages and limitations of specific cell types proposed for cell-based therapy in cardiology and give an overview of the first clinical trials using this novel therapeutic approach in patients with cardiovascular disease.
Copyright © 2014 Mosby, Inc. All rights reserved.