Robotic surgery basic skills training: Evaluation of a pilot multidisciplinary simulation-based curriculum

Can Urol Assoc J. 2013 Nov-Dec;7(11-12):430-4. doi: 10.5489/cuaj.222.

Abstract

Purpose: Simulation-based training improves clinical skills, while minimizing the impact of the educational process on patient care. We present results of a pilot multidisciplinary, simulation-based robotic surgery basic skills training curriculum (BSTC) for robotic novices.

Methods: A 4-week, simulation-based, robotic surgery BSTC was offered to the Departments of Surgery and Obstetrics & Gynecology (ObGyn) at the University of Toronto. The course consisted of various instructional strategies: didactic lecture, self-directed online-training modules, introductory hands-on training with the da Vinci robot (dVR) (Intuitive Surgical Inc., Sunnyvale, CA), and dedicated training on the da Vinci Skills Simulator (Intuitive Surgical Inc., Sunnyvale, CA) (dVSS). A third of trainees participated in competency-based dVSS training, all others engaged in traditional time-based training. Pre- and post-course skill testing was conducted on the dVR using 2 standardized skill tasks: ring transfer (RT) and needle passing (NP). Retention of skills was assessed at 5 months post-BSTC.

Results: A total of 37 participants completed training. The mean task completion time and number of errors improved significantly post-course on both RT (180.6 vs. 107.4 sec, p < 0.01 and 3.5 vs. 1.3 sec, p < 0.01, respectively) and NP (197.1 vs. 154.1 sec, p < 0.01 and 4.5 vs. 1.8 sec, p = 0.04, respectively) tasks. No significant difference in performance was seen between specialties. Competency-based training was associated with significantly better post-course performance. The dVSS demonstrated excellent face validity.

Conclusions: The implementation of a pilot multidisciplinary, simulation-based robotic surgery BSTC revealed significantly improved basic robotic skills among novice trainees, regardless of specialty or level of training. Competency-based training was associated with significantly better acquisition of basic robotic skills.