InP core-shell nanowire pn-junctions doped with Zn and Sn have been investigated in terms of growth morphology and shell carrier concentration. The carrier concentrations were evaluated using spatially resolved Hall effect measurements and show improved homogeneity compared to previous investigations, attributed to the use of Sn as the n-type dopant. Anisotropies in the growth rate of different facets are found for different doping levels that in turn affects the migration of Sn and In on the nanowire surface. A route for increasing the In migration length to obtain a more homogeneous shell thickness is presented.