Computational models of reward processing suggest that foregone or fictive outcomes serve as important information sources for learning and augment those generated by experienced rewards (e.g. reward prediction errors). An outstanding question is how these learning signals interact with top-down cognitive influences, such as cognitive reappraisal strategies. Using a sequential investment task and functional magnetic resonance imaging, we show that the reappraisal strategy selectively attenuates the influence of fictive, but not reward prediction error signals on investment behavior; such behavioral effect is accompanied by changes in neural activity and connectivity in the anterior insular cortex, a brain region thought to integrate subjective feelings with high-order cognition. Furthermore, individuals differ in the extent to which their behaviors are driven by fictive errors versus reward prediction errors, and the reappraisal strategy interacts with such individual differences; a finding also accompanied by distinct underlying neural mechanisms. These findings suggest that the variable interaction of cognitive strategies with two important classes of computational learning signals (fictive, reward prediction error) represent one contributing substrate for the variable capacity of individuals to control their behavior based on foregone rewards. These findings also expose important possibilities for understanding the lack of control in addiction based on possibly foregone rewarding outcomes.
Keywords: decision-making; emotion regulation; fMRI; fictive learning; insula; reappraisal; reward prediction errors.
Copyright © 2013 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.