Aims: To omit risks of contrast agent administration, native magnetic resonance angiography (MRA) is desired for assessing the thoracic aorta. The aim was to evaluate a native steady-state free precession (SSFP) three-dimensional (3D) MRA in comparison with contrast-enhanced MRA as the gold standard.
Methods and results: Seventy-six prospective patients with known or suspicion of thoracic aortic disease underwent MRA at 1.5 T using (i) native 3D SSFP MRA with ECG and navigator gating and high isotropic spatial resolution (1.3 × 1.3 × 1.3 mm(3)) and (ii) conventional contrast-enhanced ECG-gated gradient-echo 3D MRA (1.3 × 0.8 × 1.8 mm(3)). Datasets were compared at nine aortic levels regarding image quality (score 0-3: 0 = poor, 3 = excellent) and aortic diameters, as well as observer dependency and final diagnosis. Statistical tests included paired t-test, correlation analysis, and Bland-Altman analysis. Native 3D MRA was acquired successfully in 70 of 76 subjects (mean acquisition time 8.6 ± 2.7 min), while irregular breathing excluded 6 of 76 subjects. Aortic diameters agreed close between both methods at all aortic levels (r = 0.99; bias ± SD -0.12 ± 1.2 mm) with low intra- and inter-observer dependency (intraclass correlation coefficient 0.99). Native MRA studies resulted in the same final diagnosis as the contrast-enhanced MRA. The mean image quality score was superior with native compared with contrast-enhanced MRA (2.4 ± 0.6 vs. 1.6 ± 0.5; P < 0.001).
Conclusion: Accuracy of aortic size measurements, certainty in defining the diagnosis and benefits in image quality at the aortic root, underscore the use of the tested high-resolution native 3D SSFP MRA as an appropriate alternative to contrast-enhanced MRA to assess the thoracic aorta.
Keywords: Angiography; Aorta; Magnetic resonance; Native.
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: [email protected].