The auxiliary subunit α2δ3 modulates the expression and function of voltage-gated calcium channels. Here we show that α2δ3 mRNA is expressed in spiral ganglion neurons and auditory brainstem nuclei and that the protein is required for normal acoustic responses. Genetic deletion of α2δ3 led to impaired auditory processing, with reduced acoustic startle and distorted auditory brainstem responses. α2δ3(-/-) mice learned to discriminate pure tones, but they failed to discriminate temporally structured amplitude-modulated tones. Light and electron microscopy analyses revealed reduced levels of presynaptic Ca(2+) channels and smaller auditory nerve fiber terminals contacting cochlear nucleus bushy cells. Juxtacellular in vivo recordings of sound-evoked activity in α2δ3(-/-) mice demonstrated impaired transmission at these synapses. Together, our results identify a novel role for the α2δ3 auxiliary subunit in the structure and function of specific synapses in the mammalian auditory pathway and in auditory processing disorders.
Keywords: CACNA2D3; Ca2+ channel; auditory discrimination learning; endbulb of Held; inner hair cell; spiral ganglion.