The conformational changes within single HIV-1 Gag molecules that occur during assembly into immature viruses are poorly understood. Using an in vitro assembly assay, it has been proposed that HIV-1 Gag undergoes a conformational transition from a compact conformation in solution to an extended rod-like conformation in virus-like particles (VLPs). Here we used single-molecule Förster resonance energy transfer (smFRET) to test this model by directly probing the conformation of single HIV-1 Gag molecules. We demonstrate that monomeric HIV-1 Gag lacking the p6 domain and the N-terminal myristoyl moiety is found in solution predominantly in a compact conformation. Gag in this conformation, and in the presence of nucleic acid, assembles into 30-nm-diameter particles. However, with the addition of inositol hexakisphosphate, Gag adopts a linear conformation and assembles into full-sized ∼100-to-150-nm-diameter VLPs. Parallel fluorescence correlation spectroscopy measurements show that this conformational transition occurs early in the assembly process when Gag oligomers are small, perhaps as early as upon dimerization. Thus, smFRET measurements confirm that HIV-1 Gag transitions from a compact to a linear conformation during the formation of VLPs. Our results are consistent with a model whereby binding of HIV-1 Gag to phosphoinositides at the plasma membrane stabilizes an extended conformation and promotes oligomerization into the radially aligned immature capsid.
Importance: The establishment of single-molecule fluorescence techniques reveals the conformational state of individual HIV-1 Gag molecules prior to and during in vitro assembly into virus-like particles. The data demonstrate that Gag in distinct conformations forms particles with different morphologies. In the compact conformation, in the presence of nucleic acid, Gag forms spherical particles of a diameter of approximately 30 nm. In the extended conformation, Gag forms spherical virus-like particles of approximately 100-nm diameter. The adoption of the extended conformation required the presence of inositol hexakisphosphate in addition to nucleic acid. Our results are consistent with a model whereby binding of HIV-1 Gag to phosphoinositides at the plasma membrane stabilizes an extended conformation and promotes oligomerization into the radially aligned immature capsid.