Monitoring the biology stability of human umbilical cord-derived mesenchymal stem cells during long-term culture in serum-free medium

Cell Tissue Bank. 2014 Dec;15(4):513-21. doi: 10.1007/s10561-014-9420-6. Epub 2014 Jan 10.

Abstract

Mesenchymal stem cells (MSCs) are multipotent adult stem cells that have an immunosuppressive effect. The biological stability of MSCs in serum-free medium during long-term culture in vitro has not been elucidated clearly. The morphology, immunophenotype and multi-lineage potential were analyzed at passages 3, 5, 10, 15, 20, and 25 (P3, P5, P10, P15, P20, and P25, respectively). The cell cycle distribution, apoptosis, and karyotype of human umbilical cord-derived (hUC)-MSCs were analyzed at P3, P5, P10, P15, P20, and P25. From P3 to P25, the three defining biological properties of hUC-MSCs [adherence to plastic, specific surface antigen expression, multipotent differentiation potential] met the standards proposed by the International Society for Cellular Therapy for definition of MSCs. The cell cycle distribution analysis at the P25 showed that the percentage of cells at G0/G1 was increased, compared with the cells at P3 (P < 0.05). Cells at P25 displayed an increase in the apoptosis rate (to 183 %), compared to those at P3 (P < 0.01). Within subculture generations 3-20 (P3-P20), the differences between the cell apoptotic rates were not statistically significant (P > 0.05). There were no detectable chromosome eliminations, displacements, or chromosomal imbalances, as assessed by the karyotyping guidelines of the International System for Human Cytogenetic Nomenclature (ISCN, 2009). Long-term culture affects the biological stability of MSCs in serum-free MesenCult-XF medium. MSCs can be expanded up to the 25th passage without chromosomal changes by G-band. The best biological activity period and stability appeared between the third to 20th generations.

MeSH terms

  • Apoptosis / drug effects
  • Cell Culture Techniques / methods*
  • Cell Cycle / drug effects
  • Cell Survival / drug effects
  • Cells, Cultured
  • Chromobox Protein Homolog 5
  • Culture Media, Serum-Free / pharmacology*
  • Humans
  • Mesenchymal Stem Cell Transplantation
  • Mesenchymal Stem Cells / cytology*
  • Mesenchymal Stem Cells / drug effects*
  • Time Factors
  • Umbilical Cord / cytology
  • Umbilical Cord / drug effects

Substances

  • CBX5 protein, human
  • Culture Media, Serum-Free
  • Chromobox Protein Homolog 5