Cell surface-associated anti-MUC1-derived signal peptide antibodies: implications for cancer diagnostics and therapy

PLoS One. 2014 Jan 8;9(1):e85400. doi: 10.1371/journal.pone.0085400. eCollection 2014.

Abstract

The MUC1 tumor associated antigen is highly expressed on a range of tumors. Its broad distribution on primary tumors and metastases renders it an attractive target for immunotherapy. After synthesis MUC1 is cleaved, yielding a large soluble extracellular alpha subunit containing the tandem repeats array (TRA) domain specifically bound, via non-covalent interaction, to a smaller beta subunit containing the transmembrane and cytoplasmic domains. Thus far, inconclusive efficacy has been reported for anti-MUC1 antibodies directed against the soluble alpha subunit. Targeting the cell bound beta subunit, may bypass limitations posed by circulating TRA domains. MUC1's signal peptide (SP) domain promiscuously binds multiple MHC class II and Class I alleles, which upon vaccination, generated robust T-cell immunity against MUC1-positive tumors. This is a first demonstration of non-MHC associated, MUC1 specific, cell surfaces presence for MUC1 SP domain. Polyclonal and monoclonal antibodies generated against MUC1 SP domain specifically bind a large variety of MUC1-positive human solid and haematological tumor cell lines; MUC1-positive bone marrow derived plasma cells obtained from multiple myeloma (MM)-patients, but not MUC1 negative tumors cells, and normal naive primary blood and epithelial cells. Membranal MUC1 SP appears mainly as an independent entity but also co-localized with the full MUC1 molecule. MUC1-SP specific binding in BM-derived plasma cells can assist in selecting patients to be treated with anti-MUC1 SP therapeutic vaccine, ImMucin. A therapeutic potential of the anti-MUC1 SP antibodies was suggested by their ability to support of complement-mediated lysis of MUC1-positive tumor cells but not MUC1 negative tumor cells and normal naive primary epithelial cells. These findings suggest a novel cell surface presence of MUC1 SP domain, a potential therapeutic benefit for anti-MUC1 SP antibodies in MUC1-positive tumors and a selection tool for MM patients to be treated with the anti-MUC1 SP vaccine, ImMucin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Animals
  • Antibodies, Monoclonal / biosynthesis
  • Antibodies, Monoclonal / pharmacology*
  • Antineoplastic Agents / pharmacology*
  • Bone Marrow Cells / drug effects
  • Bone Marrow Cells / immunology
  • Bone Marrow Cells / pathology
  • Cancer Vaccines / administration & dosage*
  • Cell Line, Tumor
  • Female
  • Gene Expression
  • Humans
  • Immunity, Cellular / drug effects
  • Mice
  • Mice, Inbred BALB C
  • Middle Aged
  • Mucin-1 / chemistry
  • Mucin-1 / genetics
  • Mucin-1 / immunology*
  • Multiple Myeloma / diagnosis
  • Multiple Myeloma / drug therapy*
  • Multiple Myeloma / immunology
  • Multiple Myeloma / pathology
  • Peptides / administration & dosage
  • Peptides / chemical synthesis
  • Peptides / immunology*
  • Plasma Cells / drug effects
  • Plasma Cells / immunology
  • Plasma Cells / pathology
  • Protein Structure, Tertiary
  • Protein Subunits / chemistry
  • Protein Subunits / genetics
  • Protein Subunits / immunology*
  • Rabbits
  • T-Lymphocytes / drug effects
  • T-Lymphocytes / immunology
  • T-Lymphocytes / pathology

Substances

  • Antibodies, Monoclonal
  • Antineoplastic Agents
  • Cancer Vaccines
  • MUC1 protein, human
  • Mucin-1
  • Peptides
  • Protein Subunits

Grants and funding

This work was supported by a grant No. 48447 from the Israeli Chief Scientist of the Ministry of Industry Trade and Labor. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.