Background: Advanced glycation end products (AGE) and their receptor (RAGE) interaction elicit inflammatory and proliferative reactions in arteries, thus playing a role in cardiovascular disease. We have recently found that high-affinity DNA aptamer directed against AGE (AGE-aptamer) prevents the progression of experimental diabetic nephropathy by blocking the harmful actions of AGEs in the kidney. However, effects of AGE-aptamer on vascular injury remain unknown. In this study, we examined whether and how AGE-aptamer inhibits neointimal hyperplasia in balloon-injured rat carotid arteries.
Methods: Male Wistar rats (weighting ca. 400 g at 11 weeks old) were anesthetized with sodium pentobarbital. The left common carotid artery was balloon-injured 3 times with 2F Fogaty catheter inserted through the femoral artery. Then the rats received continuous intraperitoneal infusion (3 μg/day) of either AGE-aptamer or control-aptamer by an osmotic mini pump for 2 weeks. 14 days after the procedure, the left common carotid arteries were excised for morphometric, immunohistochemical and western blot analyses.
Results: Compared with control-aptamer, AGE-aptamer significantly suppressed neointima formation after balloon injury and reduced AGE accumulation, oxidative stress generation, proliferation cell nuclear antigen-positive area, macrophage infiltration, RAGE and platelet-derived growth factor-BB (PDGF-BB) expression levels in balloon-injured carotid arteries.
Conclusion: The present study suggests that AGE-aptamer could prevent balloon injury-induced neointimal hyperplasia by reducing PDGF-BB and macrophage infiltration via suppression of the AGE-RAGE-mediated oxidative stress generation. AGE-aptamer might be a novel therapeutic strategy for suppressing neointima formation after balloon angioplasty.
Keywords: AGE-aptamer; Balloon injury; Neointimal hyperplasia; RAGE.
Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.