Two newly described surfactant proteolipids (SPL), Phe and pVal, are produced by proteolytic processing of distinct precursors of Mr = 40,000 and 22,000, respectively. These proteins are structurally related and intimately associated with surfactant phospholipids. We now demonstrate the expression of both SPL(Phe) and SPL(pVal) in explants of human fetal lung from 16-24 weeks of gestation. Content, synthesis, and mRNA for the proteolipids were low prior to organ culture of fetal lung. Induction of synthesis of the proteolipids occurred rapidly in explant culture in the absence of exogenous hormones and was enhanced by addition of dexamethasone. Increased synthesis of the proteolipids was detected by enzyme-linked immunosorbent assay and by [35S]methionine incorporation into the glycosylated Mr = 40,000-43,000 SPL (Phe) precursor. The response to dexamethasone occurred rapidly and contrasted with effects of dexamethasone on the expression of surfactant-associated protein- (SAP) 35, a distinct surfactant glycoprotein. 8-Br-cAMP did not significantly increase proteolipid content but markedly increased synthesis of SAP-35 in identical cultures. Increased proteolipid content was associated with increased mRNA for each protein as determined by the Northern blot analysis. Proteolipid RNA was also increased by 8-Br-cAMP, however, not to the extent observed with the glucocorticoid. Immunohistochemical analysis of fetal lung with anti-proteolipid antiserum confirmed that the dexamethasone-enhanced synthesis of the proteins by Type II epithelial cells. The time and hormone dependence of the regulation of expression of both SPL(Phe) and SPL(pVal) precursors were distinct from that of SAP-35. Expression of the surfactant proteolipids increased during explant culture of human fetal lung and was further enhanced by glucocorticoid. Developmental and hormonal regulation of the surfactant proteolipids may be important factors in surfactant function at birth.