Background: The aim of this study was to compare the safety and efficacy of biodegradable-polymer (BP) drug-eluting stents (DES), bare metal stents (BMS), and durable-polymer DES in patients undergoing coronary revascularization, we performed a systematic review and network meta-analysis using a Bayesian framework.
Methods and results: Study stents included BMS, paclitaxel-eluting (PES), sirolimus-eluting (SES), endeavor zotarolimus-eluting (ZES-E), cobalt-chromium everolimus-eluting (CoCr-EES), platinium-chromium everolimus-eluting (PtCr-EES), resolute zotarolimus-eluting (ZES-R), and BP biolimus-eluting stents (BP-BES). After a systematic electronic search, 113 trials with 90 584 patients were selected. The principal endpoint was definite or probable stent thrombosis (ST) defined according to the Academic Research Consortium within 1 year.
Results: Biodegradable polymer-biolimus-eluting stents [OR, 0.56; 95% credible interval (CrI), 0.33-0.90], SES (OR, 0.53; 95% CrI, 0.38-0.73), CoCr-EES (OR, 0.34; 95% CrI, 0.23-0.52), and PtCr-EES (OR, 0.31; 95% CrI, 0.10-0.90) were all superior to BMS in terms of definite or probable ST within 1 year. Cobalt-chromium everolimus-eluting stents demonstrated the lowest risk of ST of all stents at all times after stent implantation. Biodegradable polymer-biolimus-eluting stents was associated with a higher risk of definite or probable ST than CoCr-EES (OR, 1.72; 95% CrI, 1.04-2.98). All DES reduced the need for repeat revascularization, and all but PES reduced the risk of myocardial infarction compared with BMS.
Conclusions: All DESs but PES and ZES-E were superior to BMS in terms of ST within 1 year. Cobalt-chromium everolimus-eluting stents was safer than any DES even including BP-BES. Our results suggest that not only the biodegradability of polymer, but the optimal combination of stent alloy, design, strut thickness, polymer, and drug all combined determine the safety of DES.
Keywords: Bare metal stents; Biodegradable polymer drug-eluting stents; Drug-eluting stents; Meta-analysis.