This study aimed to evaluate the fluoride uptake of dentine treated with a 38 % silver diamine fluoride (SDF) solution and laser irradiation at sub-ablative energy levels. Fifteen human dentine slices were prepared and divided into four samples each. Four types of laser were chosen: CO2 (10,600 nm), Er:YAG (2,940 nm), Nd:YAG (1,064 nm) and Diode (810 nm). First, the four samples from 12 of the dentine slices were treated with SDF, and then irradiated by one of the four types of laser at three different settings. One sample was untreated and acted as a control. The setting that rendered the highest fluoride uptake was selected. Second, the remaining dentine slices were treated with SDF and irradiated by the four lasers with the selected settings. Fluoride uptake was assessed using Energy Dispersive X-ray Spectrometry at the dentine surface and up to 20 μm below the surface. The selected settings were CO2 irradiation at 1.0 W for 1 s, Er:YAG irradiation at 0.5 W for 20 s, Nd:YAG irradiation at 2.0 W for 1 s and diode irradiation at 3.0 W for 3 s. The fluoride content (weight %) at the dentine surface following CO2, Er:YAG, Nd:YAG and diode irradiation was 6.91 ± 3.15, 4.09 ± 1.19, 3.35 ± 2.29 and 1.73 ± 1.04, respectively. CO2 and Er:YAG irradiation resulted in higher fluoride uptake than Nd:YAG and diode irradiation at all levels (p < 0.05). CO2 laser and Er:YAG laser irradiation rendered higher fluoride uptake in the SDF-treated dentine than Nd:YAG laser and diode laser irradiation.