Background: Three-dimensional ultrasound (3DUS) at simulation compared to 3DUS at treatment is an image guidance option for partial breast irradiation (PBI). This study assessed if user dependence in acquiring and contouring 3DUS (operator variability) contributed to variation in seroma shifts calculated for breast IGRT.
Methods: Eligible patients met breast criteria for current randomized PBI studies. 5 Operators participated in this study. For each patient, 3 operators were involved in scan acquisitions and 5 were involved in contouring. At CT simulation (CT1), a 3DUS (US1) was performed by a single radiation therapist (RT). 7 to 14 days after CT1 a second CT (CT2) and 3 sequential 3DUS scans (US2a,b,c) were acquired by each of 3 RTs. Seroma shifts, between US1 and US2 scans were calculated by comparing geometric centers of the seromas (centroids). Operator contouring variability was determined by comparing 5 RT's contours for a single image set. Scanning variability was assessed by comparing shifts between multiple scans acquired at the same time point (US1-US2a,b,c). Shifts in seromas contoured on CT (CT1-CT2) were compared to US data.
Results: From an initial 28 patients, 15 had CT visible seromas, met PBI dosimetric constraints, had complete US data, and were analyzed. Operator variability contributed more to the overall variability in seroma localization than the variability associated with multiple scan acquisitions (95% confidence mean uncertainty of 6.2 mm vs. 1.1 mm). The mean standard deviation in seroma shift was user dependent and ranged from 1.7 to 2.9 mm. Mean seroma shifts from simulation to treatment were comparable to CT.
Conclusions: Variability in shifts due to different users acquiring and contouring 3DUS for PBI guidance were comparable to CT shifts. Substantial inter-observer effect needs to be considered during clinical implementation of 3DUS IGRT.