On the National Ignition Facility, the hohlraum-driven implosion symmetry is tuned using cross-beam energy transfer (CBET) during peak power, which is controlled by applying a wavelength separation between cones of laser beams. In this Letter, we present early-time measurements of the instantaneous soft x-ray drive at the capsule using reemission spheres, which show that this wavelength separation also leads to significant CBET during the first shock, even though the laser intensities are 30× smaller than during the peak. We demonstrate that the resulting early drive P2/P0 asymmetry can be minimized and tuned to <1% accuracy (well within the ±7.5% requirement for ignition) by varying the relative input powers between different cones of beams. These experiments also provide time-resolved measurements of CBET during the first 2 ns of the laser drive, which are in good agreement with radiation-hydrodynamics calculations including a linear CBET model.