Dose-response studies are performed to investigate the potency of a compound. EC50 is the concentration of the compound that gives half-maximal response. Dose-response data are typically evaluated by using a log-logistic model that includes EC50 as one of the model parameters. Often, more than one experiment is carried out to determine the EC50 value for a compound, requiring summarization of EC50 estimates from a series of experiments. In this context, mixed-effects models are designed to estimate the average behavior of EC50 values over all experiments by considering the variabilities within and among experiments simultaneously. However, fitting nonlinear mixed-effects models is more complicated than in a linear situation, and convergence problems are often encountered. An alternative strategy is the application of a meta-analysis approach, which combines EC50 estimates obtained from separate log-logistic model fitting. These two proposed strategies to summarize EC50 estimates from multiple experiments are compared in a simulation study and real data example. We conclude that the meta-analysis strategy is a simple and robust method to summarize EC50 estimates from multiple experiments, especially suited in the case of a small number of experiments.
Keywords: Dose-response analysis; EC50 estimate; Log-logistic model; Meta-analysis; Nonlinear mixed-effects model.
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.