Although hippocampus is thought to perform various memory-related functions, little is known about the underlying dynamics of neural activity during a preparatory stage before a spatial choice. Here we focus on neural activity that reflects a memory-based code for spatial alternation, independent of current sensory and motor parameters. We recorded multiple single units and local field potentials in the stratum pyramidale of dorsal hippocampal area CA1 while rats performed a delayed spatial-alternation task. This task includes a 1-s fixation in a nose-poke port between selecting alternating reward sites and so provides time-locked enter-and-leave events. At the single-unit level, we concentrated on neurons that were specifically active during the 1-s fixation period, when the rat was ready and waiting for a cue to pursue the task. These neurons showed selective activity as a function of the alternation sequence. We observed a marked shift in the phase timing of the neuronal spikes relative to the theta oscillation, from the theta peak at the beginning of fixation to the theta trough at the end of fixation. The gamma-band local field potential also changed during the fixation period: the high-gamma power (60-90 Hz) decreased and the low-gamma power (30-45 Hz) increased toward the end. These two gamma components were observed at different phases of the ongoing theta oscillation. Taken together, our data suggest a switch in the type of information processing through the fixation period, from externally cued to internally generated.
Keywords: gamma oscillations; memory; nose-poking paradigm; spike phase shift; theta rhythm.