Janus nanobelts: fabrication, structure and enhanced magnetic-fluorescent bifunctional performance

Nanoscale. 2014 Mar 7;6(5):2945-52. doi: 10.1039/c3nr05472a. Epub 2014 Jan 30.

Abstract

A new nanostructure of magnetic-fluorescent bifunctional Janus nanobelts with Fe3O4/PMMA as one half and Tb(BA)3phen/PMMA as the other half has been successfully fabricated by a specially designed parallel spinneret electrospinning technology. The morphology and properties of the final products were investigated in detail by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), biological microscopy (BM), vibrating sample magnetometry (VSM) and fluorescence spectroscopy. The results revealed that the [Fe3O4/PMMA]//[Tb(BA)3phen/PMMA] magnetic-fluorescent bifunctional Janus nanobelts possess superior magnetic and fluorescent properties due to their special nanostructure. Compared with Fe3O4/Tb(BA)3phen/PMMA composite nanobelts, the magnetic-fluorescent bifunctional Janus nanobelts provided better performance. The new magnetic-fluorescent bifunctional Janus nanobelts have potential applications in novel nano-bio-label materials, drug target delivery materials and future nanodevices due to their excellent magnetic-fluorescent properties, flexibility and insolubility. Moreover, the construction technique for the Janus nanobelts is of universal significance for the fabrication of other multifunctional Janus nanobelts.

Publication types

  • Research Support, Non-U.S. Gov't