Accessory factors promote AlfA-dependent plasmid segregation by regulating filament nucleation, disassembly, and bundling

Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2176-81. doi: 10.1073/pnas.1304127111. Epub 2014 Jan 30.

Abstract

In bacteria, some plasmids are partitioned to daughter cells by assembly of actin-like proteins (ALPs). The best understood ALP, ParM, has a core set of biochemical properties that contributes to its function, including dynamic instability, spontaneous nucleation, and bidirectional elongation. AlfA, an ALP that pushes plasmids apart in Bacillus, relies on a different set of underlying properties to segregate DNA. AlfA elongates unidirectionally and is not dynamically unstable; its assembly and disassembly are regulated by a cofactor, AlfB. Free AlfB breaks up AlfA bundles and promotes filament turnover. However, when AlfB is bound to the centromeric DNA sequence, parN, it forms a segrosome complex that nucleates and stabilizes AlfA filaments. When reconstituted in vitro, this system creates polarized, motile comet tails that associate by antiparallel filament bundling to form bipolar, DNA-segregating spindles.

Keywords: Bacillus subtilis; DNA segregation; bacterial cytoskeleton; reconstitution.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacillus subtilis / metabolism*
  • Bacterial Proteins / chemistry
  • Bacterial Proteins / metabolism
  • Bacterial Proteins / physiology*
  • Centromere
  • DNA, Bacterial / metabolism
  • Operon
  • Plasmids*
  • Protein Conformation

Substances

  • Bacterial Proteins
  • DNA, Bacterial