We report on a study of the process e+ e- → π± (DD*)∓ at sqrt[s] = 4.26 GeV using a 525 pb(-1) data sample collected with the BESIII detector at the BEPCII storage ring. A distinct charged structure is observed in the (DD*)∓ invariant mass distribution. When fitted to a mass-dependent-width Breit-Wigner line shape, the pole mass and width are determined to be Mpole = (3883.9±1.5(stat)±4.2(syst)) MeV/c2 and Γpole = (24.8±3.3(stat)±11.0(syst)) MeV. The mass and width of the structure, which we refer to as Zc(3885), are 2σ and 1σ, respectively, below those of the Zc(3900) → π± J/ψ peak observed by BESIII and Belle in π+ π- J/ψ final states produced at the same center-of-mass energy. The angular distribution of the πZc(3885) system favors a JP = 1+ quantum number assignment for the structure and disfavors 1- or 0-. The Born cross section times the DD* branching fraction of the Zc(3885) is measured to be σ(e+ e- → π± Zc(3885)∓)×B(Zc(3885)∓ → (DD*)∓) = (83.5±6.6(stat)±22.0(syst)) pb. Assuming the Zc(3885) → DD* signal reported here and the Zc(3900) → πJ/ψ signal are from the same source, the partial width ratio (Γ(Zc(3885) → DD*)/Γ(Zc(3900) → πJ/ψ)) = 6.2±1.1(stat)±2.7(syst) is determined.