Graphene plasmonics for terahertz to mid-infrared applications

ACS Nano. 2014 Feb 25;8(2):1086-101. doi: 10.1021/nn406627u. Epub 2014 Jan 31.

Abstract

In recent years, we have seen a rapid progress in the field of graphene plasmonics, motivated by graphene's unique electrical and optical properties, tunability, long-lived collective excitation and its extreme light confinement. Here, we review the basic properties of graphene plasmons: their energy dispersion, localization and propagation, plasmon-phonon hybridization, lifetimes and damping pathways. The application space of graphene plasmonics lies in the technologically significant, but relatively unexploited terahertz to mid-infrared regime. We discuss emerging and potential applications, such as modulators, notch filters, polarizers, mid-infrared photodetectors, and mid-infrared vibrational spectroscopy, among many others.