To define the role of the CD2-lymphocyte function-associated antigen 3 (LFA-3) interaction in T-cell activation, we have expressed a cDNA encoding the human CD2 molecule in a murine antigen-specific T-cell hybridoma. Expression of the CD2 molecule greatly enhances T-cell responsiveness to antigen; this enhancement is inhibited by anti-CD2 and anti-LFA-3 monoclonal antibodies (mAbs). CD2+ hybridomas produce interleukin 2 in response to combinations of anti-CD2 mAbs 9.6 and 9-1 and, in the presence of mAb 9-1, to sheep erythrocytes or to the LFA-3 antigen. Furthermore, hybridomas expressing a mutant CD2 molecule that has lost mAb 9.6 binding do not exhibit the enhanced response to antigen or the ability to respond to LFA-3 plus mAb 9-1, but these hybridomas retain the ability to respond to combinations of anti-CD2 mAbs. The role of the CD2-LFA-3 interaction in T-cell activation and the potential for other physiologic ligands for CD2 are discussed.