Comparison of sugars, iridoid glycosides and amino acids in nectar and phloem sap of Maurandya barclayana, Lophospermum erubescens, and Brassica napus

PLoS One. 2014 Jan 29;9(1):e87689. doi: 10.1371/journal.pone.0087689. eCollection 2014.

Abstract

Background: Floral nectar contains sugars and amino acids to attract pollinators. In addition, nectar also contains different secondary compounds, but little is understood about their origin or function. Does nectar composition reflect phloem composition, or is nectar synthesized and/or modified in nectaries? Studies where both, the nectar as well as the phloem sap taken from the same plant species were analyzed in parallel are rare. Therefore, phloem sap and nectar from different plant species (Maurandya barclayana, Lophospermum erubescens, and Brassica napus) were compared.

Methodology and principal findings: Nectar was collected with microcapillary tubes and phloem sap with the laser-aphid-stylet technique. The nectar of all three plant species contained high amounts of sugars with different percentages of glucose, fructose, and sucrose, whereas phloem sap sugars consisted almost exclusively of sucrose. One possible reason for this could be the activity of invertases in the nectaries. The total concentration of amino acids was much lower in nectars than in phloem sap, indicating selective retention of nitrogenous solutes during nectar formation. Nectar amino acid concentrations were negatively correlated with the nectar volumes per flower of the different plant species. Both members of the tribe Antirrhineae (Plantaginaceae) M. barclayana and L. erubescens synthesized the iridoid glycoside antirrhinoside. High amounts of antirrhinoside were found in the phloem sap and lower amounts in the nectar of both plant species.

Conclusions/significance: The parallel analyses of nectar and phloem sap have shown that all metabolites which were found in nectar were also detectable in phloem sap with the exception of hexoses. Otherwise, the composition of both aqueous solutions was not the same. The concentration of several metabolites was lower in nectar than in phloem sap indicating selective retention of some metabolites. Furthermore, the existence of antirrhinoside in nectar could be based on passive secretion from the phloem.

Publication types

  • Comparative Study

MeSH terms

  • Amino Acids / metabolism*
  • Brassica napus / metabolism*
  • Iridoid Glycosides / metabolism*
  • Monosaccharides / metabolism*
  • Phloem / metabolism*
  • Plant Leaves / metabolism
  • Plant Nectar / metabolism*
  • Seeds / metabolism
  • Species Specificity

Substances

  • Amino Acids
  • Iridoid Glycosides
  • Monosaccharides
  • Plant Nectar

Grants and funding

The authors have no support or funding to report.