Construction and validation of nano gold tripods for molecular imaging of living subjects

J Am Chem Soc. 2014 Mar 5;136(9):3560-71. doi: 10.1021/ja412001e. Epub 2014 Feb 11.

Abstract

Anisotropic colloidal hybrid nanoparticles exhibit superior optical and physical properties compared to their counterparts with regular architectures. We herein developed a controlled, stepwise strategy to build novel, anisotropic, branched, gold nanoarchitectures (Au-tripods) with predetermined composition and morphology for bioimaging. The resultant Au-tripods with size less than 20 nm showed great promise as contrast agents for in vivo photoacoustic imaging (PAI). We further identified Au-tripods with two possible configurations as high-absorbance nanomaterials from various gold multipods using a numerical simulation analysis. The PAI signals were linearly correlated with their concentrations after subcutaneous injection. The in vivo biodistribution of Au-tripods favorable for molecular imaging was confirmed using small animal positron emission tomography (PET). Intravenous administration of cyclic Arg-Gly-Asp-d-Phe-Cys (RGDfC) peptide conjugated Au-tripods (RGD-Au-tripods) to U87MG tumor-bearing mice showed PAI contrasts in tumors almost 3-fold higher than for the blocking group. PAI results correlated well with the corresponding PET images. Quantitative biodistribution data revealed that 7.9% ID/g of RGD-Au-tripods had accumulated in the U87MG tumor after 24 h post-injection. A pilot mouse toxicology study confirmed that no evidence of significant acute or systemic toxicity was observed in histopathological examination. Our study suggests that Au-tripods can be reliably synthesized through stringently controlled chemical synthesis and could serve as a new generation of platform with high selectivity and sensitivity for multimodality molecular imaging.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Female
  • Gold / chemistry*
  • Gold / pharmacokinetics
  • Humans
  • Mice
  • Molecular Imaging / methods*
  • Nanostructures*
  • Oligopeptides / chemistry
  • Photoacoustic Techniques
  • Polyethylene Glycols / chemistry
  • Positron-Emission Tomography

Substances

  • Oligopeptides
  • Polyethylene Glycols
  • Gold
  • arginyl-glycyl-aspartic acid