The candidate phylum Poribacteria by single-cell genomics: new insights into phylogeny, cell-compartmentation, eukaryote-like repeat proteins, and other genomic features

PLoS One. 2014 Jan 31;9(1):e87353. doi: 10.1371/journal.pone.0087353. eCollection 2014.

Abstract

The candidate phylum Poribacteria is one of the most dominant and widespread members of the microbial communities residing within marine sponges. Cell compartmentalization had been postulated along with their discovery about a decade ago and their phylogenetic association to the Planctomycetes, Verrucomicrobia, Chlamydiae superphylum was proposed soon thereafter. In the present study we revised these features based on genomic data obtained from six poribacterial single cells. We propose that Poribacteria form a distinct monophyletic phylum contiguous to the PVC superphylum together with other candidate phyla. Our genomic analyses supported the possibility of cell compartmentalization in form of bacterial microcompartments. Further analyses of eukaryote-like protein domains stressed the importance of such proteins with features including tetratricopeptide repeats, leucin rich repeats as well as low density lipoproteins receptor repeats, the latter of which are reported here for the first time from a sponge symbiont. Finally, examining the most abundant protein domain family on poribacterial genomes revealed diverse phyH family proteins, some of which may be related to dissolved organic posphorus uptake.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bacteria / classification
  • Bacteria / cytology
  • Bacteria / genetics*
  • Bacterial Proteins / genetics
  • Genetic Variation
  • Genome, Bacterial / genetics
  • Genomics / methods*
  • Phylogeny
  • Porifera / microbiology*
  • RNA, Ribosomal, 16S / genetics
  • Single-Cell Analysis / methods*

Substances

  • Bacterial Proteins
  • RNA, Ribosomal, 16S

Grants and funding

This publication was funded by the German Research Foundation (DFG) and the University of Wuerzburg in the funding programme Open Access Publishing. URL: http://www.bibliothek.uni-wuerzburg.de/en/homepage/. Financial support to U.H. was provided by the SFB630-grant TPA5, the SFB567-grant TPC3, and by the Bavaria California Technology Center (BaCaTeC). T.W., C.R., P.S., N.I and K.M. were funded by the United States Department of Energy Joint Genome Institute, Office of Science of the United States Department of Energy under Contract No. DE-AC02-05CH11231. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.