Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae) is an invasive ambrosia beetle that vectors laurel wilt, a new disease that threatens avocado and other species in the Lauraceae Family. The lethal concentrations (LC50 & 90) of nine commercial insecticides to X. glabratus were determined by using a bolt-dip bioassay. Different formulations of bifenthrin, permethrin, fenpropathrin, z-cypermethrin + bifenthrin, 1-cyhalothrin + thiamethoxam, malathion, chlorpyrifos, carbaryl, and methomyl were tested. Four concentrations of each insecticide were tested (0.5, 0.1, 0.03, and 0.01 of the label rate) and with water as a control. Beetles were exposed to treated bolts and mortality registered 48 h later. After 2 wk, bolts were destructively sampled to determine the number of beetles that constructed galleries and were alive inside the wood. Probit analysis was used to determine the LC50 & 90. Six pesticides were applied directly to the trunk and limbs of avocado trees in a commercial grove. Limbs of treated trees were cut weekly after the application and exposed to X. glabratus to determine the number of beetles boring into the logs. The toxicity of pesticides to X. glabratus was greatly reduced 2 wk after application. Among the tested pesticides, malathion and z-cypermethrin + bifenthrin provided the best suppression of X. glabratus. Among the insecticides registered for use in avocado, fenpropathrin and malathion were the most effective in protecting trees from attack by X. glabratus. Other pesticides that are currently not registered for use in avocados could be useful for managing this ambrosia beetle.