Semantic interestingness measures for discovering association rules in the skeletal dysplasia domain

J Biomed Semantics. 2014 Feb 5;5(1):8. doi: 10.1186/2041-1480-5-8.

Abstract

Background: Lately, ontologies have become a fundamental building block in the process of formalising and storing complex biomedical information. With the currently existing wealth of formalised knowledge, the ability to discover implicit relationships between different ontological concepts becomes particularly important. One of the most widely used methods to achieve this is association rule mining. However, while previous research exists on applying traditional association rule mining on ontologies, no approach has, to date, exploited the advantages brought by using the structure of these ontologies in computing rule interestingness measures.

Results: We introduce a method that combines concept similarity metrics, formulated using the intrinsic structure of a given ontology, with traditional interestingness measures to compute semantic interestingness measures in the process of association rule mining. We apply the method in our domain of interest - bone dysplasias - using the core ontologies characterising it and an annotated dataset of patient clinical summaries, with the goal of discovering implicit relationships between clinical features and disorders. Experimental results show that, using the above mentioned dataset and a voting strategy classification evaluation, the best scoring traditional interestingness measure achieves an accuracy of 57.33%, while the best scoring semantic interestingness measure achieves an accuracy of 64.38%, both at the recall cut-off point 5.

Conclusions: Semantic interestingness measures outperform the traditional ones, and hence show that they are able to exploit the semantic similarities inherently present between ontological concepts. Nevertheless, this is dependent on the domain, and implicitly, on the semantic similarity metric chosen to model it.