Current methods of assessing tumor response at skeletal sites with metastatic disease use a combination of imaging tests, serum and urine biochemical markers, and symptoms assessment. These methods do not always enable the positive assessment of therapeutic benefit to be made but instead provide an evaluation of progression, which then guides therapy decisions in the clinic. Functional imaging techniques such as whole-body diffusion magnetic resonance imaging (MRI) when combined with anatomic imaging and other emerging "wet" biomarkers can improve the classification of therapy response in patients with metastatic bone disease. A range of imaging findings can be seen in the clinic depending on the type of therapy and duration of treatment. Successful response to systemic therapy is usually depicted by reductions in signal intensity accompanied by apparent diffusion coefficient (ADC) increases. Rarer patterns of successful treatment include no changes in signal intensity accompanying increases in ADC values (T2 shine-through pattern) or reductions in signal intensity without ADC value changes. Progressive disease results in increases in extent/intensity of disease on high b-value images with variable ADC changes. Diffusion MRI therapy response criteria need to be developed and tested in prospective studies in order to address current, unmet clinical and pharmaceutical needs for reliable measures of tumor response in metastatic bone disease.
Keywords: bone metastases; breast and prostate cancer; diffusion MRI; therapy monitoring; whole-body MRI.
Copyright © 2014 Wiley Periodicals, Inc.