Objective: We introduce an RGD (Arg-Gly-Asp)-containing peptide of collagen IV origin that possesses potent cell adhesion and proliferation properties.
Materials and methods: In this experimental study, the peptide was immobilized on an electrospun nanofibrous polycaprolactone/gelatin (PCL/Gel) hybrid scaffold by a chemical bonding approach to improve cell adhesion properties of the scaffold. An iodine-modified phenylalanine was introduced in the peptide to track the immobilization process. Native and modified scaffolds were characterized with scanning electronmicroscopy (SEM) and fourier transform infrared spectroscopy (FTIR). We studied the osteogenic and adipogenic differentiation potential of human bone marrow-derived mesenchymal stem cells (hBMSCs). In addition, cell adhesion and proliferation behaviors of hBMSCs on native and peptide modified scaffolds were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 4',6-diamidino-2-phenylindole (DAPI) staining, and the results compared with tissue culture plate, as the control.
Results: FTIR results showed that the peptide successfully immobilized on the scaffold.MTT assay and DAPI staining results indicated that peptide immobilization had a dramatic effect on cell adhesion and proliferation.
Conclusion: This peptide modified nanofibrous scaffold can be a promising biomaterial for tissue engineering and regenerative medicine with the use of hBMSCs.
Keywords: Baicalin; Erythropoiesis; Hematopoietic Stem Cell; PPARgamma.
Copyright © 2014. Published by Royan Institute (ACECR). Full text is avalible in: www.celljournal.org.