Asparaginases are among the most effective agents against acute lymphoblastic leukemia (ALL) and are Food and Drug Administration-approved for the treatment of pediatric and adult ALL. However, the efficacy of these drugs for the treatment of other hematologic malignancies particularly acute myeloid leukemia is not well established. The mechanism of action of asparaginases has thought to be related to a swift and sustained reduction in serum L-asparagine, which is required for rapid proliferation of metabolically demanding leukemic cells. However, asparagine depletion alone appears not to be sufficient for effective cytotoxic activity of asparaginase against leukemia cells, because glutamine can rescue asparagine-deprived cells by regeneration of asparagine via a transamidation chemical reaction. For this reason, glutamine reduction is also necessary for full anti-leukemic activity of asparaginase. Indeed, both Escherichia coli and Erwinia chrysanthemi asparaginases possess glutaminase enzymatic activity, and their administrations have shown to reduce serum glutamine level by deamidating glutamine to glutamate and ammonia. Emerging data have provided evidence that several types of neoplastic cells require glutamine for the synthesis of proteins, nucleic acids, and lipids. This fundamental role of glutamine and its metabolic pathways for growth and proliferation of individual malignant cells may identify a special group of patients whose solid or hematologic neoplasms may benefit significantly from interruption of glutamine metabolism. To this end, asparaginase products deserve a second look particularly in non-ALL malignant blood disorders. Here, we review mechanisms of anti-tumor activity of asparaginase focusing on importance of glutamine reduction, pharmacology of asparaginase products, in vitro activities as well as clinical experience of incorporating asparaginase in therapeutic regimens for non-ALL hematologic malignancies.