Background: In a classic model, G(i)α proteins including G(i1)α, G(i2)α and G(i3)α are important for transducing signals from G(i)α protein-coupled receptors (G(i)αPCRs) to their downstream cascades in response to hormones and neurotransmitters. Our previous study has suggested that G(i1)α, G(i2)α and G(i3)α are also important for the activation of the PI3K/Akt/mTORC1 pathway by epidermal growth factor (EGF) and its family members. However, a genetic role of these G(i)α proteins in the activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) by EGF is largely unknown. Further, it is not clear whether these G(i)α proteins are also engaged in the activation of both the Akt/mTORC1 and ERK1/2 pathways by other growth factor family members. Additionally, a role of these G(i)α proteins in breast cancer remains to be elucidated.
Results: We found that Gi1/3 deficient MEFs with the low expression level of G(i2)α showed defective ERK1/2 activation by EGFs, IGF-1 and insulin, and Akt and mTORC1 activation by EGFs and FGFs. Gi1/2/3 knockdown breast cancer cells exhibited a similar defect in the activations and a defect in in vitro growth and invasion. The G(i)α proteins associated with RTKs, Gab1, FRS2 and Shp2 in breast cancer cells and their ablation impaired Gab1's interactions with Shp2 in response to EGF and IGF-1, or with FRS2 and Grb2 in response to bFGF.
Conclusions: G(i)α proteins differentially regulate the activation of Akt, mTORC1 and ERK1/2 by different families of growth factors. G(i)α proteins are important for breast cancer cell growth and invasion.